102 research outputs found

    Testing Small Set Expansion in General Graphs

    Get PDF
    We consider the problem of testing small set expansion for general graphs. A graph GG is a (k,ϕ)(k,\phi)-expander if every subset of volume at most kk has conductance at least ϕ\phi. Small set expansion has recently received significant attention due to its close connection to the unique games conjecture, the local graph partitioning algorithms and locally testable codes. We give testers with two-sided error and one-sided error in the adjacency list model that allows degree and neighbor queries to the oracle of the input graph. The testers take as input an nn-vertex graph GG, a volume bound kk, an expansion bound ϕ\phi and a distance parameter ε>0\varepsilon>0. For the two-sided error tester, with probability at least 2/32/3, it accepts the graph if it is a (k,ϕ)(k,\phi)-expander and rejects the graph if it is ε\varepsilon-far from any (k,ϕ)(k^*,\phi^*)-expander, where k=Θ(kε)k^*=\Theta(k\varepsilon) and ϕ=Θ(ϕ4min{log(4m/k),logn}(lnk))\phi^*=\Theta(\frac{\phi^4}{\min\{\log(4m/k),\log n\}\cdot(\ln k)}). The query complexity and running time of the tester are O~(mϕ4ε2)\widetilde{O}(\sqrt{m}\phi^{-4}\varepsilon^{-2}), where mm is the number of edges of the graph. For the one-sided error tester, it accepts every (k,ϕ)(k,\phi)-expander, and with probability at least 2/32/3, rejects every graph that is ε\varepsilon-far from (k,ϕ)(k^*,\phi^*)-expander, where k=O(k1ξ)k^*=O(k^{1-\xi}) and ϕ=O(ξϕ2)\phi^*=O(\xi\phi^2) for any 0<ξ<10<\xi<1. The query complexity and running time of this tester are O~(nε3+kεϕ4)\widetilde{O}(\sqrt{\frac{n}{\varepsilon^3}}+\frac{k}{\varepsilon \phi^4}). We also give a two-sided error tester with smaller gap between ϕ\phi^* and ϕ\phi in the rotation map model that allows (neighbor, index) queries and degree queries.Comment: 23 pages; STACS 201

    A Theory for Valiant's Matchcircuits (Extended Abstract)

    Full text link
    The computational function of a matchgate is represented by its character matrix. In this article, we show that all nonsingular character matrices are closed under matrix inverse operation, so that for every kk, the nonsingular character matrices of kk-bit matchgates form a group, extending the recent work of Cai and Choudhary (2006) of the same result for the case of k=2k=2, and that the single and the two-bit matchgates are universal for matchcircuits, answering a question of Valiant (2002)
    corecore